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Microtubules as essential biopolymers implicated into electrical intracellular transport open a lot of questions about their intrinsic
character of dynamic instability. Both experimental and theoretical investigations are used to understand their behavior in order
to mimic and build powerful and smart biomaterials. So, in this paper, by analytical and computational approaches, we proposed
an electrical analogue computer of microtubule’s protofilament drawing from the partial differential equation which describes
microtubule’s motion. Using the computing elements, namely, operational amplifiers, capacitors, and resistors, we designed
analytically the bioelectronic circuit of the microtubule’s protofilament. To validate our model, Runge–Kutta code was used to
solve the partial differential equation of MT’s motion on software Matlab, and then, the results obtained are used as a controller to
fit and validate numerical results obtained by running the bioelectronic circuit on software PSpice. It is shown that the analogue
circuit displayed spontaneous electrical activity consistent with self-sustained electrical oscillations. We found out that two
behaviors were exhibited by the voltage generated from the electrical analogue computer of MT’s protofilament; amplification and
damping behaviors are modulated by the values of the resistor of the summing operational amplifier. From our study, it is shown
that low values of the resistor promote damping behavior while high values of the resistor promote an amplification behavior. So
microtubule’s protofilament exhibits different spontaneous regimes leading to different oscillatory modes. 'is study put forward
the possibility to build microtubule’s protofilament as a biotransistor.

1. Introduction

At the nanoscale, biological systems displayed electrical
activity that cares biological communication via electrical
signals [1]. Microtubules (MTs), made up of electrically polar
tubulin heterodimer subunits α-tubulin (negatively charged)
and β-tubulin (positively charged) monomers forming an
electric dipole are essential cellular biopolymers, playing an
important role in the intracellular signaling and information
processing [2], recognized to participate in eukaryote vesicle
trafficking and cell division, implicated in cognitive pro-
cessing by contributing to neuronal developmental struc-
tures such as axons and dendrites [3–5]. MTs contribute to
the processing of electrical activity of excitable cells and
signals within neuron via ion channel regulation [6–8]. 'ey
are the source of electromagnetic fields in the form of electric

pulses [9]. In that way, they are good conductors of electrical
signals at nanolevel and are assimilated to cellular automata
[10, 11]. Besides, microtubules perform mechanical dy-
namics revealing vibration characteristics and nanoscale
effects on their structure [12–16]. Recently, some research
studies summarize the possibility of MTs to application in
novel bioinspired nanoelectronic components [17]. In fact,
because of their self-organization intrinsic character,
through dynamic instability phenomenon modulated by
temperature physical control, they facilitate the fabrication
of nanowires, nodes, and networks in the future for bion-
anotechnology applications [18]. 'e field of nanotechnol-
ogy applications of biomolecular motors is a young and
evolving area of research. While the field has advanced
significantly in recent decades, it is fraught with several
engineering challenges. Both experimental and theoretical
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approaches are used to conduct nanotechnology research on
MT. In 2020, Kalra et al. quantified at physiological tubulin
concentration the capacitance and resistance of the mi-
crotubule network. 'ey reported that through counterionic
condensation, microtubules act as charge storage devices
across a broad frequency spectrum [19]. Tuszynski et al. , by
a theoretical basis and experimental support, showed that
MTs behave consistently with the definition of a memristor.
'ey provided an estimation of MT memristance and dis-
cussed the significance of biology, especially neuroscience,
and the potential for nanotechnology applications [20]. In
2006, Priel et al. investigatedMTelectrodynamics properties.
'ey reported that MTs behave as biomolecular transistors
capable of amplifying electrical information [8]. Recently,
Gutierrez et al. reported that isolated brainMTs are electrical
oscillators that behave as “ionic-based” transistors and
amplify electrical signals which may have important im-
plications in neuronal computational capabilities [21]. All
the abovementioned studies have been done experimentally.
In the theoretical viewpoint, MT’s bioelectronic circuits
were first established by Sekulié and Satarić , who was in-
spired by electrical nonlinear transmission line: RLC circuit
[2]. Moreover, Ilić et al. have modelled microtubules as
nanowires capable of enhancing ionic transport using a
similar approach than Sekulié [22]. In fact, in the theoretical
viewpoint, researchers were inspired by a general RLC-cell
circuit by considering the values of elements usually esti-
mated experimentally. 'is consideration is powerful but
not sufficient to generate a realistic and unique circuit
characterizing the natural MTs. 'us, in this work, we
propose an electrical analogue computer of microtubule by
drawing from the partial differential equation describing the
dynamics of the system. Composed by electrical computing
elements such as resistors, capacitors, and operational
amplifiers, an electrical analogue computer is an active
network capable of simulating any set of linear and non-
linear partial differential equations. 'e voltage waveform
generated from the electrical analogue computer is usually
encoded into the time evolution, providing powerful
computational real-time operation and complete parallel-
ism. What we will do is to compare numerical results ob-
tained from the partial differential equation using
Runge–Kutta code to numerical results obtained from the
analogue computer simulated on PSpice. 'e paper is or-
ganized as follows: Section 2 gives an overview about
computing elements; in Section 3, the analogue computer of
MT’s protofilament is presented, Section 4 investigates
numerical results on Matlab and PSpice, and Section 5
concludes the study.

2. The Computing Elements

In this section, we summarize the relation between output
and input voltages of each computing analogue element that
can be useful to design the analogue computer. 'e relations
are derived using the common node laws at the entrance of
each operational amplifier (Figure 1).

'e principal component in an analogue computer is the
operational amplifier. When two impedances Zi and Zf are

connected to such an amplifier as shown in Figure 1(a), it
can be shown that the input and output voltages to the
circuit are related by summing the currents:

i1 + i2 � 0⟹
vi

Zi

  +
vo

Zf

  � 0. (1)

'e output voltage is given by

vo � −
Zf

Zi

 vi. (2)

'us, the quantity (Zf/Zi) acts as an operator on the input
voltage vi to produce the output v0.WhenZf andZi are chosen
to be two resistors, the operator simply becomes a multiplying
constant and equation (1) takes the following form:

vo � −
Rf

Ri

 vi. (3)

If Rf � Ri, the output and the input are inversely related
as follows:

vo � − vi. (4)

'is type of circuit given in equation (4) is known as the
inverting operational amplifier because of the phase
inverting property (negative sign) associated with it. Most
inverting amplifiers, which are part of the standard com-
puting setup, usually have multiplication constants of 1, 4,
and 10. In general, the amplifier may have more than one
input port as shown in Figure 1(b). 'e result is a summing
amplifier, whose output vo is given by

vo � − Rf

v1

R1
+

v2

R2
+

v3

R3
 . (5)

When a capacitor C and a resistor of resistance Ri are
connected as shown in Figure 1(c), the output voltage is
evaluated as follows:

Assuming i1 + i2 � 0⟹ i1 � − i2

i2 � C
d vo − v−( 

dt
� C

dvo

dt
. (6)

Knowing that v− ⟶ 0

i1 �
vi − v−

Ri

  �
vi

Ri

 . (7)

Using equations (6) and (7), the corresponding node law
relation can be written as follows:

i1 + i2 �
vi

Ri

  + C
dvo

dt
  � 0. (8)

From equation (8), the output voltage is given by the
following expression:

vo � −
1

RiC
   vidt. (9)

In the case of many input voltages, the output is eval-
uated by summing all the input currents (Figure 1(d)): i1 +
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i2 + i3 + i4 � 0, with i1 � C(dvo/dt), i3 � (v2/R2), i2 � (v1/R1),

i4 � (v3/R3)

So C(dvo/dt) + (v1/R1) + (v2/R2) + (v3/R3) � 0, the
output voltage in this case is expressed as follows:

vo � −
1
C

  
v1

R1
  +

v2

R2
  +

v3

R3
  dt. (10)

3. Analogue Computer of MT’s Protofilament

In this section, the differential equation describing the
motion of a protofilament is presented. 'e time encode
equation is then expressed as 2 parametric equations. By
using these parametric equations and the suitable computing
components summarized above, the electrical analogue
circuit is designed. From the designed circuit, the electrical
equation of motion is performed and compared to the
original differential equation in order to derive the network
of resistors necessary to run the circuit on PSpice.

3.1. Differential Equation of Motion. 'e model assumes
only one degree of freedom per dimer, which is common for,
more or less, each model describing microtubule dynamics.
According to the model, the dimers perform angular os-
cillations, but the coordinate u is the projection of the top of
the dimer on the direction of protofilament and the model
can be regarded as the longitudinal one [23, 24]. 'e general
equation describing MT’s protofilament motion using
Hamilton equations is expressed as follows:

α
d2ψ
dξ2

  − ρ
dψ
dξ

  − βψ + δψ3
− σ � 0. (11)

By assuming the dimensionless parameters:

α� ((mω2 − kl2κ2)/A), ρ� (cω/A),σ � (qE/A
�����
(A/B)


),

and β≈ δ⟶ 1 in which m is a mass of the dimer, k is an
intradimer stiffness parameter, q>0 represents the excess
charge within the dipole, E>0 is internal electric field and the
integer, A is a constant depending on temperature and B is an
arbitrary constant, c is a viscosity coefficient of the cytosol,
and l is a length of a tubulin dimer. Since ζ � κX − ω0t, α
measures the competition between the kinetic energy of the
tubulin dimer and the potential energy of pertaining chemical
bonds [23, 24], ρ is a constant related to viscosity coefficient of
the cytosol. Parameters β and δ are arbitrary and related to the
nonlinearity of the system.σ characterizes the electrical force,
and this parameter was evaluated by Zdravkovic et al. [23, 24];
equation (11) depends on both space and time. But in this
study, we shall consider only the temporal variation of the
wave function generated during the dynamic instability
phenomenon of MT. 'e spatial term in ξ will be considered
invariant. So, the time dependence of the equation of motion
is written as follows:

α€x − ρ _x − βx + δx
3

− σ � 0. (12)

τ � ω0t and _x � (dx/dτ), and x represents the part of the
wave function that depends only on time. It is assumed that
equations (11) and (12) represent a first approximation of the
system with a single degree of freedom related to longitu-
dinal displacement.

Let us proceed by parametric equation by supposing
_x � y, equation (12) can be written as a set of 2 equations as
follows:

_x � y,

_y �
ρ
α

 y +
β
α

 x −
δ
α

 x
3

+
σ
α

 .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(13)
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Figure 1: Computing elements. (a) High gain dc amplifier with feedback and input impedances, (b) summing amplifier, (c) integrating
amplifier, and (d) summing integrating amplifier.
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So,

x �  y dτ,

y � 
ρ
α

 y +
β
α

 x −
δ
α

 x
3

+
σ
α

  dτ.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Using equation (13) and considering the computing
elements previously study, we can generate the electrical
analog computer that corresponds to MT’s protofilament
equation of motion over time as shown in Figure 2.

In fact, the procedure used to design the circuit is as follows.

Step 1. 'e circuit will be built using 2 input voltages
corresponding to _x and _y. We have to derive the exact
corresponding expression of each input voltage using ca-
pacitors and resistors. As shown in equation (14), it is
suitable to build x and y using integrating amplifier in
Figure 1(c) corresponding to equation (9). Let us use
equation (9) to evaluate the input voltage as follows:

vo � − (1/RiC)  vidt⟶ RiCvo � −  vidt, meaning that

RiC _v0 � − vi. We have to keep in mind that if we integrate the
input _x by using equation (9), we shall get − x as an output.
'us, the expression RiC _v0 � − vi will be rewritten as follows:
− vi1

� R1 C1 (− _x) for the first parametric equation and
− vi2

� R2C2(− _y) for the second parametric equation in
equation (13) as shown in Figure 2, respectively.

Step 2. By observing the second parametric equation in
equation (13), we should generate y , x , x3 and a constant
input VCC corresponding to a last term of the expression.
'e first term y is built using inverting amplifier of
Figure 1(a) with Zi � Zf � R to inverse the input − y to the
output y as expressed in equation (4).'e same procedure is
done to get x from − x. 'e input x is then multiplied 3
times to get x3 as shown in Figure 2.

Step 3. In this stage, we have to connect all the components
together with respect to equation (13). From the first
parametric equation, the input _x will be connected to the
output y of the second parametric equation. From the
second parametric equation of equation (13), we have to sum
− y, − x, x3, and − VCC by using summing amplifier of
Figure 1(b) where the corresponding expression of the
output is given by equation (5). 'e input − VCC is added
such that the summing amplifier is constituted by 4 input
voltages corresponding to each term. All terms in the second
parametric equation of equation (13) are signed negative
except x3 which is signed positive, as the sign in the formula
of equation (5) can suitably be corresponded to the ex-
pression of equation (13). Rf in equation (5) corresponds to
R′ in Figure 2. 'e output of the summing amplifier is then
connected to the input voltage R2C2 _y to balance the right
side to the left side of the second parametric equation of
equation (13).

3.2. Derivation of Electrical Equation of Motion. 'e objec-
tive now is to evaluate the corresponding values of each
computing component according to MT’s parameters
(Figure 2). In fact, the electrical equation of vibration of the
corresponding circuit of a protofilament is computed by
using the inverse procedure.

From Figure 2, we get directly

R1C1 _x′ � y,

R2C2 _y′ � − R′
− y

R3
  −

x

R4
  +

x
3

R5
  −

Vcc

R6
  ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where _x′ � dx/dt, and (15) can be rewritten as follows:

_x′ �
1

R1C1
y,

_y′ �
R′

R3R2C2
y +

R′
R4R2C2

x −
R′

R5R2C2
x
3

+
R′

R6R2C2
Vcc.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

As stated earlier, we make the change of time variable as
τ � ω0t⟹ dτ � ω0dt. Equation (16) is then recast to

ω01
dx

dτ
  � ω01 _x �

1
R1C1

y,

ω02
dy

dτ
  � ω02 _y �

R′
R3R2C2

 y +
R′

R4R2C2
 x

−
R′

R5R2C2
 x

3
+

R′
R6R2C2

 Vcc.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

'e final expression can be written as follows:

_x �
1

R1C1ω01
y,

_y �
R′

R3R2C2ω02
 y +

R′
R4R2C2ω02

 x

−
R′

R5R2C2ω02
 x

3
+

R′
R6R2C2ω02

 Vcc.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

By identifying equation (13) to (18), we can get the
following relations:
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1
R1C1ω01

  � 1,

R′
R3R2C2ω02

  �
ρ
α

 ,

R′
R4R2C2ω02

  �
β
α

 

R′
R5R2C2ω02

  �
δ
α

 ,

R′
R6R2C2ω02

Vcc  �
σ
α

 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟹

R1 �
1

C1ω01
 ,

R3 �
R′

R2C2ω02 ∗ (ρ/α)
,

R4 �
R′

R2C2ω02 ∗ (β/α)
,

R5 �
R′

R2C2ω02 ∗ (δ/α)
,

R6 �
R′Vcc

R2C2ω02 ∗ (σ/α)
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

4. Numerical Results

In this section, we have solved the equation of motion
numerically using Runge–Kutta code and then run the
corresponding circuit on PSpice. 'e purpose of this pro-
cedure is to have an idea about the general behavior of the
waveforms propagating along protofilament.

By varying the values of α, ρ, σ at constant parameters
β, δ related to the nonlinearity. 'e following solutions are
obtained.

It is observed that the nature of waves depends on the
value of α. For low values of α, waves generated are subsonic

waves as shown in Figures 3 and 4. For high values of α,
waves generated are supersonic as shown in Figure 5. As
previously mentioned, α measures the competition between
the kinetic energy and the chemical potential of pertaining
bonds. We assume that high values of αmean the highest of
kinetic energy in front of chemical potential promotes su-
personic behavior while low values of α promote subsonic
behavior when the chemical potential of pertaining bonds is
higher.

In the case of subsonic behavior (see Figures 3 and, 4), it
is shown that by increasing the value of α, the wave am-
plitude increases and oscillations are promoted. Moreover,
parameter σ that relates to electric force promotes oscilla-
tions as well. As parameter ρ related to cytosol viscosity
increases, the signal amplitude decreases over time. Pa-
rameters δ and β do not affect the signal amplitude; we
consider them equal to 1. So, for subsonic cases, α and σ
promote oscillations and increase the signal amplitude. 'e
damping parameter ρ collapses oscillations and promotes a
linear and constant signal over time. In the case of super-
sonic behaviour (see Figure 5), it is observed that the in-
crease in α and σ do not change the signal amplitude, but it is
well observed that their increase promotes oscillations, while
the increase of parameter ρ collapses oscillations. In this last
case, it is observed that the amplification phenomenon can
arise infinitely for high values of α and σ and for low values
of ρ. 'is situation is an ideal case and difficult to occur in
nature in general and particularly in biological systems.
Generally, the switch between amplification and damping
behaviors of a signal generated cares the transmission
process during the dynamics of biological systems. 'is
allows to balance the energy used and procedure in the
system. Besides, each transmitted signal is amplified or
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Figure 2: Electrical analogue computer of microtubule’s protofilament.
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damped for a given time and then usually becomes constant
or totally vanishes or switches to an opposite behavior over
time. In the case of the dynamic instability of natural

microtubule, we assume that the energy modulating the
polymerization/depolymerization cannot care an infinite
amplification over time. In fact, the energy produced during
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Figure 3: Wave function generated from thepartial differential equation at lowkinetic energy. (a)α � 0.3, ρ � 0.1, σ � 0.38; (b)α � 0.3, ρ � 0.2, σ � 0.38;
(c) α � 0.3, ρ � 0.1, σ � 0.15; (d) α � 0.3, ρ � 0.2, σ � 0.15.
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Figure 4: Wave functiongenerated fromthepartial differential equationathighkinetic energy. (a)α � 0.8, ρ � 0.1, σ � 0.38; (b)α � 0.8, ρ � 0.2, σ � 0.38;
(c) α � 0.8, ρ � 0.1, σ � 0.15; (d) α � 0.8, ρ � 0.2, σ � 0.15.
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the polymerization is used during the depolymerization.
During this situation, the energy carried by the waveform
moving along protofilament varies constantly and the os-
cillations generated during the vibration are probably af-
fected. So the chemical energy of pertaining bonds can
increase or decrease the kinetic energy as the corresponding
parameter α remains low. From the above mentioned, we
argue that the real system cannot be designed in the situation

of very high kinetic energy. 'us to run the electrical an-
alogue on PSpice, we will stay in the situation of Figures 3
and 4 and mimic both the amplification and damping
behaviors.

Let us run the electrical analogue computer using the
software PSpice by considering appropriate values of each
parameter as given in Figures 3 and 4. 'e circuit is run for
the case where α � 0.3, ρ � 0.1, σ � 0.38, but similar curves
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Figure 5: Wave function generated from the partial differential equation at very high kinetic energy. (a) α � 1, ρ � 0.1, σ � 0.38; (b)
α � 1, ρ � 0.2, σ � 0.38; (c) α � 1, ρ � 0.1, σ � 0.15; (d) α � 1, ρ � 0.2, σ � 0.15.
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Figure 6: Output voltages of (a) amplifier with capacitor C1, (b) amplifier with capacitor C2, and (c) the nonlinear part x3 for R′ � 10KΩ,
C1 � 100 nF, C2 � 10 uF, R � R1 � R2 � R3 � R5 � 10KΩ, Vcc � 12V, R4 � 5KΩ, R6 � 2.77KΩ.
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are obtained by using values of α less than 1 and
σ ≺ σmax � (2/3

�
3

√
). 'ese values of parameters are reported

in [23, 24] and were evaluated within the situation of a
favorable configuration that promotes information pro-
cessing during the dynamic instability.

By varying resistances, we will try tomimic amplifying or
damping behaviors from the electrical signal. For the fol-
lowing simulation values C1 � 100 nF, C2 � 10 uF,

R � 10KΩ chosen, the signal generated will be convergent.
Other values can be used. By fixing these parameters, we use
equation (19) to compute other resistances useful for our
simulations.'e lecturer needs to keep in mind that for each
value of R′, he has to evaluate the corresponding network of
resistances.

Numerical results previously obtained from MATLAB
(Figures 3–5) are used as a controller to find suitable values
of resistors. Suitable values of MT parameters are chosen as
the electrical analog computer can mimic the behaviour
generated by Runge–Kutta code. Voltage is measured at the
output of memory computing elements (amplifiers) and the
output of the nonlinear proportion x3. 'e increase or
decrease behaviour of the output voltage of the electrical
analogue computer is modulated by the values of R′.

For R′ � 10KΩ as shown in Figure 6, the output voltages
exhibit an increasing behaviour and maintain the same
amplitude over time. In Figure 6, spontaneous oscillations
showed changes in signal’s regime and amplitude, namely,
amplification regime where signal’s amplitude increases with
time from 0 s to 0.6 s and constant regime where signal’s
amplitude remains constant over time (from 0.6 s to 2 s).
'ese results showed the ability of a single microtubule’s
protofilament to handle amplification of electrical activity
and self-controlled the amplification by maintaining the
behaviour constant over time. 'is situation puts forward
realistic behaviour of the physical system as previously

mentioned. Spontaneous changes are well observed in sig-
nal’s amplitude, suggesting that intracellular electrical sig-
naling may heavily obey to the assembly and organization of
the various cytoskeletal structures over time [21]. For
R′≻10KΩ as shown in Figure 7, the oscillations collapse
over time and the output voltages become linear. In fact, by
increasing the value of R′ up to 10KΩ, the output voltages
also exhibit two regimes: spontaneous amplification of os-
cillations from 0 s until 0.8 s with a clear change in the
signal’s amplitude and then a constant and linear response
from 0.8 s until 2 s. 'ese changes in regime and amplitude
can suggest changes in polarity of the holding potential and
conductance as reported by Gutierrez et al. [21] in the case of
isolated microtubule.

By decreasing the value R′ as R′ ≤ 1KΩ (Figures 8 and 9),
the output voltages exhibit a decreasing behaviour of the os-
cillation amplitude over time, without becoming linear similar
to the behaviour shown in Figures 3 and 4). Results obtained in
Figures 8 and 9 are similar to those obtained by Gutierrez et al.
[21]. By decreasing the values of R 3 and R 5 as shown in
Figure 9, the same behaviour as in Figure 8 is obtained. In
general, the behavior of the output voltages depends on the
values taken by R′. For R′ ∈ ]1KΩ − 10KΩ[, the same
output voltages as in Figure 6 are generated. According to the
results obtained, it is observed that low values of resistance R′
act as damping parameter but care oscillations over time while
high values of resistance R′ act as amplifier parameter but
maintain the amplitude of output constant by increasing time.
For these cases, it is also observed that the signal exhibits
approximately two regimes as previously (Figure 6). However,
an interesting difference became evident, namely, that the
richer oscillatory behavior drastically changed to damping one
and sustained spontaneous stronger oscillations over time. In
fact, it is a well-observed fast spontaneous damping regime,
followed by smoothly damping regime over time (Figures 8
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Figure 7: Output voltages of (a) amplifier with capacitor C1, (b) amplifier with capacitor C2, and (c) the nonlinear part x3 for R′≻10KΩ,
C1 � 100 nF, C2 � 10 uF, R � R1 � R2 � R3 � R5 � 10KΩ, Vcc � 12V, R4 � 5KΩ, R6 � 2.77KΩ.
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and 9). In these environmental conditions, electrical oscilla-
tions are cared over time. But the signal’s amplitude decreases
continuously.

Other simulations have been carried out by varying
resistors’ values of R4 and R6. In general, the same be-
havior is obtained, So the behavior of the output voltages
depends on the values of R′. Results obtained from nu-
merical investigations put forward spontaneous electrical
activity consistent with self-sustained electrical oscilla-
tions during the dynamics of the microtubule’s
protofilament.

5. Conclusion

In this work, we tantalized to build an electrical analogue
computer of MT’s protofilament drawing from the partial
differential equation of MT’s motion. By using the suitable
values of MT’s parameters, we have been able to find suitable
values of computing elements. Numerical results have
shown that the behaviour of the output voltage generated by
the electrical analogue computer is modulated by the re-
sistance R′. High values of R′ promote increase in the be-
havior of the signal that can become linear for very high
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Figure 9: Output voltages of (a) amplifier with capacitor C1, (b) amplifier with capacitor C2, and (c) the nonlinear part x3 for R′ ≤ 1KΩ,
C1 � 100 nF, C2 � 10 uF, R � R1 � R2 � 10KΩ, Vcc � 12V, R4 � 5KΩ, R6 � 2.77KΩ, R3 � R5 � 5KΩ.
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Figure 8: Output voltages of (a) amplifier with capacitor C1, (b) amplifier with capacitor C2, and (c) the nonlinear part x3 for R′ ≤ 1KΩ,
C1 � 100 nF, C2 � 10 uF, R � R1 � R2 � R3 � R5 � 10KΩ, Vcc � 12V, R4 � 5KΩ, R6 � 2.77KΩ.
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values of R′ while low values of R′ promote decrease in the
behavior of the electrical voltage and care the oscillation over
time. To build a more realistic analogue computer, one needs
to use the exact values of MT parameters to derive the
suitable computing elements. 'e behaviour of the output
voltage obtained for R′ ≤ 1KΩ is similar to the results ob-
tained by experimental studies. 'is study put forward the
electrical activity of microtubule protofilament by electrical
oscillations occurring at different regimes with amplitude
changes as mechanism for intracellular signaling and
communications inside neurons. So designing microtubule
as an electrical analogue computer can be useful to better
understand the dynamics of the entire system and to build
new biological nanowires and biotransistors.
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